Follow elsaayolanda on Twitter

Friday, October 15, 2010

Resistor & Potensiometer



Resistor adalah komponen elektronik dua saluran yang didesain untuk menahan arus listrik dengan memproduksi penurunan tegangan diantara kedua salurannya sesuai dengan arus yang mengalirinya, berdasarkan hukum Ohm:
\begin{align}V&=IR\\
I&=\frac{V}{R}\end{align}
Resistor digunakan sebagai bagian dari jejaring elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam kompon dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).
Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat diboroskan. Karakteristik lain termasuk koefisien suhu, desah listrik, dan induktansi.
Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, resistor harus cukup besar secara fisik agar tidak menjadi terlalu panas saat memboroskan daya.

Resistor
3 Resistors.jpg
Tiga buah resistor komposisi karbon
Simbol Resistor symbol Europe.svg (IEE, IEC, EU)
Resistor symbol America.svg (US, JP)
Tipe Komponen pasif
Kemasan Dua kaki
Fungsi Menahan arus listrik

Konstruksi

Resistor komposisi karbon terdiri dari sebuah unsur resistif berbentuk tabung dengan kawat atau tutup logam pada kedua ujungnya. Badan resistor dilindungi dengan cat atau plastik. Resistor komposisi karbon lawas mempunyai badan yang tidak terisolasi, kawat penghubung dililitkan disekitar ujung unsur resistif dan kemudian disolder. Resistor yang sudah jadi dicat dengan kode warna dari harganya.
Unsur resistif dibuat dari campuran serbuk karbon dan bahan isolator (biasanya keramik). Resin digunakan untuk melekatkan campuran. Resistansinya ditentukan oleh perbandingan dari serbuk karbon dengan bahan isolator. Resistor komposisi karbon sering digunakan sebelum tahun 1970-an, tetapi sekarang tidak terlalu populer karena resistor jenis lain mempunyai karakteristik yang lebih baik, seperti toleransi, kemandirian terhadap tegangan (resistor komposisi karbon berubah resistansinya jika dikenai tegangan lebih), dan kemandirian terhadap tekanan/regangan. Selain itu, jika resistor menjadi lembab, bahang dari solder dapat mengakibatkan perubahan resistansi yang tak dapat dikembalikan.
Walaupun begitu, resistor ini sangat reliabel jika tidak pernah diberikan tegangan lebih ataupun panas lebih.
Resistor ini masih diproduksi, tetapi relatif cukup mahal. Resistansinya berkisar antara beberapa miliohm hingga 22 MOhm.

Film karbon

Selapis film karbon diendapkan pada selapis substrat isolator, dan potongan memilin dibuat untuk membentuk jalur resistif panjang dan sempit. Dengan mengubah lebar potongan jalur, ditambah dengan resistivitas karbon (antara 9 hingga 40 µΩ-cm) dapat memberikan resistansi yang lebar. Resistor film karbon memberikan rating daya antara 1/6 W hingga 5 W pada 70 °C. Resistansi tersedia antara 1 ohm hingga 10 MOhm. Resistor film karbon dapat bekerja pada suhu diantara -55 °C hingga 155 °C. Ini mempunyai tegangan kerja maksimum 200 hingga 600 volt.

Film logam

Unsur resistif utama dari resistor foil adalah sebuah foil logam paduan khusus setebal beberapa mikrometer.
Resistor foil merupakan resistor dengan presisi dan stabilitas terbaik. Salah satu parameter penting yang mempengaruhi stabilitas adalah koefisien temperatur dari resistansi (TCR). TCR dari resistor foil sangat rendah. Resistor foil ultra presisi mempunyai TCR sebesar 0.14ppm/°C, toleransi ±0.005%, stabilitas jangka panjang 25ppm/tahun, 50ppm/3 tahun, stabilitas beban 0.03%/2000 jam, EMF kalor 0.1μvolt/°C, desah -42dB, koefisien tegangan 0.1ppm/V, induktansi 0.08μH, kapasitansi 0.5pF.

Penandaan resistor

Resistor aksial biasanya menggunakan pola pita warna untuk menunjukkan resistansi. Resistor pasang-permukaan ditandas secara numerik jika cukup besar untuk dapat ditandai, biasanya resistor ukuran kecil yang sekarang digunakan terlalu kecil untuk dapat ditandai. Kemasan biasanya cokelat muda, cokelat, biru, atau hijau, walaupun begitu warna lain juga mungkin, seperti merah tua atau abu-abu.
Resistor awal abad ke-20 biasanya tidak diisolasi, dan dicelupkan ke cat untuk menutupi seluruh badan untuk pengkodean warna. Warna kedua diberikan pada salah satu ujung, dan sebuah titik (atau pita) warna di tengah memberikan digit ketiga. Aturannya adalah "badan, ujung, titik" memberikan urutan dua digit resistansi dan pengali desimal. Toleransi dasarnya adalah ±20%. Resistor dengan toleransi yang lebih rapat menggunakan warna perak (±10%) atau emas (±5%) pada ujung lainnya.

Identifikasi empat pita

Identifikasi empat pita adalah skema kode warna yang paling sering digunakan. Ini terdiri dari empat pita warna yang dicetak mengelilingi badan resistor. Dua pita pertama merupakan informasi dua digit harga resistansi, pita ketiga merupakan pengali (jumlah nol yang ditambahkan setelah dua digit resistansi) dan pita keempat merupakan toleransi harga resistansi. Kadang-kadang pita kelima menunjukkan koefisien suhu, tetapi ini harus dibedakan dengan sistem lima warna sejati yang menggunakan tiga digit resistansi.
Sebagai contoh, hijau-biru-kuning-merah adalah 56 x 104Ω = 560 kΩ ± 2%. Deskripsi yang lebih mudah adalah: pita pertama, hijau, mempunyai harga 5 dan pita kedua, biru, mempunyai harga 6, dan keduanya dihitung sebagai 56. Pita ketiga,kuning, mempunyai harga 104, yang menambahkan empat nol di belakang 56, sedangkan pita keempat, merah, merupakan kode untuk toleransi ± 2%, memberikan nilai 560.000Ω pada keakuratan ± 2%.

Warna Pita pertama Pita kedua Pita ketiga
(pengali)
Pita keempat
(toleransi)
Pita kelima
(koefisien suhu)
Hitam 0 0 × 100

Cokelat 1 1 ×101 ± 1% (F) 100 ppm
Merah 2 2 × 102 ± 2% (G) 50 ppm
Oranye 3 3 × 103
15 ppm
Kuning 4 4 × 104
25 ppm
Hijau 5 5 × 105 ± 0.5% (D)
Biru 6 6 × 106 ± 0.25% (C)
Ungu 7 7 × 107 ± 0.1% (B)
Abu-abu 8 8 × 108 ± 0.05% (A)
Putih 9 9 × 109

Emas

× 10-1 ± 5% (J)
Perak

× 10-2 ± 10% (K)
Kosong


± 20% (M)






Identifikasi lima pita

Identifikasi lima pita digunakan pada resistor presisi (toleransi 1%, 0.5%, 0.25%, 0.1%), untuk memberikan harga resistansi ketiga. Tiga pita pertama menunjukkan harga resistansi, pita keempat adalah pengali, dan yang kelima adalah toleransi. Resistor lima pita dengan pita keempat berwarna emas atau perak kadang-kadang diabaikan, biasanya pada resistor lawas atau penggunaan khusus. Pita keempat adalah toleransi dan yang kelima adalah koefisien suhu.

Resistor pasang-permukaan


Gambar ini menunjukan empat resistor pasang permukaan (komponen pada kiri atas adalah kondensator) termasuk dua resistor nol ohm. Resistor nol ohm sering digunakan daripada lompatan kawat sehingga dapat dipasang dengan mesin pemasang resistor.
Resistor pasang-permukaan dicetak dengan harga numerik dengan kode yang mirip dengan kondensator kecil. Resistor toleransi standar ditandai dengan kode tiga digit, dua pertama menunjukkan dua angka pertama resistansi dan angka ketiga menunjukkan pengali (jumlah nol). Contoh:
"334" = 33 × 10.000 ohm = 330 KOhm
"222" = 22 × 100 ohm = 2,2 KOhm
"473" = 47 × 1,000 ohm = 47 KOhm
"105" = 10 × 100,000 ohm = 1 MOhm
Resistansi kurang dari 100 ohm ditulis: 100, 220, 470. Contoh:
"100" = 10 × 1 ohm = 10 ohm
"220" = 22 × 1 ohm = 22 ohm
Kadang-kadang harga-harga tersebut ditulis "10" atau "22" untuk mencegah kebingungan.
Resistansi kurang dari 10 ohm menggunakan 'R' untuk menunjukkan letak titik desimal. Contoh:
"4R7" = 4.7 ohm
"0R22" = 0.22 ohm
"0R01" = 0.01 ohm
Resistor presisi ditandai dengan kode empat digit. Dimana tiga digit pertama menunjukkan harga resistansi dan digit keempat adalah pengali. Contoh:
"1001" = 100 × 10 ohm = 1 kohm
"4992" = 499 × 100 ohm = 49,9 kohm
"1000" = 100 × 1 ohm = 100 ohm
"000" dan "0000" kadang-kadang muncul bebagai harga untuk resistor nol ohm
Resistor pasang-permukaan saat ini biasanya terlalu kecil untuk ditandai.

Penandaan tipe industri

Format:
XX YYYZ
  • X: kode tipe
  • Y: nilai resistansi
  • Z: toleransi
Rating Daya pada 70 °C
Kode Tipe Rating Daya (Watt) Teknik MIL-R-11 Teknik MIL-R-39008
BB RC05 RCR05
CB ¼ RC07 RCR07
EB ½ RC20 RCR20
GB 1 RC32 RCR32
HB 2 RC42 RCR42
GM 3 - -
HM 4 - -
Kode Toleransi
Toleransi Teknik Industri Teknik MIL
±5% 5 J
±20% 2 M
±10% 1 K
±2% - G
±1% - F
±0.5% - D
±0.25% - C
±0.1% - B
Rentang suhu operasional membedakan komponen kelas komersil, kelas industri dan kelas militer.
  • Kelas komersil: 0 °C hingga 70 °C
  • Kelas industri: −40 °C hingga 85 °C (seringkali −25 °C hingga 85 °C)
  • Kelas militer: −55 °C hingga 125 °C (seringkali -65 °C hingga 275 °C)
  • Kelas standar: -5 °C hingga 60 °C
 Potensiometer

Potensiometer adalah resistor tiga terminal dengan sambungan geser yang membentuk pembagi tegangan dapat disetel. Jika hanya dua terminal yang digunakan (salah satu terminal tetap dan terminal geser), potensiometer berperan sebagai resistor variabel atau Rheostat. Potensiometer biasanya digunakan untuk mengendalikan peranti elektronik seperti pengendali suara pada penguat. Potensiometer yang dioperasikan oleh suatu mekanisme dapat digunakan sebagai transduser, misalnya sebagai sensor joystick.
Potensiometer
Potentiometer.jpg
Potensiometer satu putaran yang umum
Simbol Potentiometer symbol Europe.svg (EU)
Potentiometer symbol.svg(US)
Tipe Komponen pasif
Kategori Komponen resistif

Potensiometer linier & Logaritmik

Potensiometer linier mempunyap unsur resistif dengan penampang konstan, menghasilkan peranti dengan resistansi antara penyapu dengan salah satu terminal proporsional dengan jarak antara keduanya.. Potensiometer linier digunakan jika relasi proporsional diinginkan antara putaran sumbu dengan rasio pembagian dari potensiometer, misalnya pengendali yang digunakan untuk menyetel titik pusat layarPotensiometer logaritmik
Potensiometer logaritmik mempunyai unsur resistif yang semakin menyempit atau dibuat dari bahan yang memiliki resistivitas bervariasi. Ini memberikan peranti yang resistansinya merupakan fungsi logaritmik terhadap sudut poros potensiometer.
Sebagian besar potensiometer log (terutama yang murah) sebenarnya tidak benar-benar logaritmik, tetapi menggunakan dua jalur resistif linier untuk meniru hukum logaritma. Potensiometer log juga dapat dibuat dengan menggunakan potensiometer linier dan resistor eksternal. Potensiometer yang benar-benar logaritmik relatif sangat mahal.
Potensiometer logaritmik sering digunakan pada peranti audio, terutama sebagai pengendali volume.

Potensiometer jarang digunakan untuk mengendalikan daya tinggi (lebih dari 1 Watt) secara langsung. Potensiometer digunakan untuk menyetel taraf isyarat analog (misalnya pengendali suara pada peranti audio), dan sebagai pengendali masukan untuk sirkuit elektronik. Sebagai contoh, sebuah peredup lampu menggunakan potensiometer untuk menendalikan pensakelaran sebuah TRIAC, jadi secara tidak langsung mengendalikan kecerahan lampu.
Potensiometer yang digunakan sebagai pengendali volume kadang-kadang dilengkapi dengan sakelar yang terintegrasi, sehingga potensiometer membuka sakelar saat penyapu berada pada posisi terendah.

Pengetrim pasang PCB atau "trimpot", ditujukan untuk pengaturan yang jarang dilakukan

Rheostat

Cara paling umum untuk mengubah-ubah resistansi dalam sebuah sirkuit adalah dengan menggunakan resistor variabel atau rheostat. Sebuah rheostat adalah resistor variabel dua terminal dan seringkali didesain untuk menangani arus dan tegangan yang tinggi. Biasanya rheostat dibuat dari kawat resistif yang dililitkan untuk membentuk koil toroid dengan penyapu yang bergerak pada bagian atas toroid, menyentuh koil dari satu lilitan ke lilitan selanjutnya.
Potensiometer tiga terminal dapat digunakan sebagai resistor variabel dua terminal dengan tidak menggunakan terminal ketiga. Seringkali terminal ketiga yang tidak digunakan disambungkan dengan terminal penyapu untuk mengurangi fluktuasi resistansi yang disebabkan oleh kotoran.


Potensiometer lilitan kawat daya tinggi. Potensiometer jenis apapun dapat digunakan juga sebagai rheostat

    No comments :

    Post a Comment